Connect with us

Science News

All Identical Twins Appear to Carry a Hidden Chemical Signature on Their DNA

Published

on

Identical twins originate from one egg cell that splits and gives rise to two embryos, but during development, one twin sometimes “vanishes”, leaving only one baby to be born.

Now, a new study hints that your DNA may reveal whether you started out as an identical twin in the womb, even if your twin disappeared long before your birth.

 

In the new study, published Tuesday (Sept. 28) in the journal Nature Communications, the researchers zoomed in on so-called epigenetic modifications found in twin DNA.

The term “epigenetic” refers to factors that can switch genes “on” or “off” without changing their underlying DNA sequence. For example, small molecules called methyl groups can cling like sticky notes to specific genes and prevent the cell from reading those genes, thus effectively switching them off.

According to the new study, the DNA of identical twins comes adorned with a characteristic pattern of sticky methyl groups. This pattern spans 834 genes and can be used to differentiate identical twins from both fraternal twins and non-twins, the authors found. And, in fact, based on these results, the team developed a computer algorithm that can reliably identify an identical twin based solely on the location of methyl groups across their DNA. 

In theory, such a tool would also be able to spot someone who’d had a vanishing twin, although the new study didn’t test this idea.

Related: Seeing double: 8 fascinating facts about twins 

In essence, this methyl group pattern is a kind of “molecular scar” left over from identical twins’ early embryonic development, said Robert Waterland, a professor of pediatrics and genetics at Baylor College of Medicine who was not involved in the new study.

“The authors have discovered an epigenetic signature of monozygotic twinning,” meaning twinning that stems from a single fertilized egg, or zygote, he said.

 

The genes coated in these methyl groups play various roles in cell development, growth and adhesion, meaning they help cells stick to one another. That said, based on the current study, it’s unclear how these methylated genes, in particular, might influence the growth, development or health of identical twins, Waterland said.

In investigating these scars of early development, the authors wanted to better understand why identical twinning occurs in the first place. Scientists know that the zygote splits at a certain point of development, but it has been a mystery as to why the splitting sometimes occurs.

“[The study] was driven by the fact that we knew very little about why monozygotic twins arise,” said first author Jenny van Dongen, an assistant professor in the Department of Biological Psychology at Vrije University (VU) Amsterdam.

An estimated 12 percent of human pregnancies start out as multiple pregnancies, but less than 2 percent are carried to term, meaning the rest result in a so-called vanishing twin, according to a 1990 report in the International Journal of Fertility and Sterility.

Overall, in cases where both twins make it to term, fraternal twins are generally more common than identical ones.   

 

Evidence suggests that genetics influences a mother’s likelihood of bearing fraternal twins, which happens when two eggs get fertilized at the same time. For instance, studies show that fraternal twinning can run in families and that genes involved in hyperovulation seem to be at play, van Dongen said.

By comparison, the prevalence of identical twins is fairly consistent across the world, occurring in roughly 3 to 4 out of every 1,000 births, which hints that genetics doesn’t drive the phenomenon. The question is, what does?

“It’s really a mystery in developmental biology,” said senior author Dorret Boomsma, a professor in the Department of Biological Psychology at VU Amsterdam. 

The team wondered if the solution to this mystery might be encoded in the methyl groups decorating a person’s DNA, since the molecules help to control embryonic development in its very earliest stages. And thanks to special proteins called methyltransferases, the methyl groups added to our DNA in development get copied down as our cells continue to divide, meaning they can stick around into adulthood.

For the new study, the team pulled epigenetic data from six large cohorts of twins, for a total of more than 6,000 individuals. The cohorts included both identical twins and fraternal twins as well as some non-twin family members of these individuals. By including the fraternal twins, the team could check whether any epigenetic patterns seen in identical twins were actually unique to them and not common to all kinds of twins. 

 

Related: Having a baby: Stages of pregnancy by trimester

Most of the DNA methylation data came from blood samples collected from adults, but one data set consisted of cheek swab samples from children. And across all of the samples, the team found the same distinct patterns of methylation in identical twin DNA. 

“The fact that they see the same things in those cells is reassuring,” because that shows that the pattern isn’t specific to one type of cell, Waterland said.

This implies that the telltale methylation took place super early in development, before specialized tissues, like the heart or lungs, began to form. When methyl groups stick to DNA at this stage, methyltransferases pass down the molecules to all subsequent daughter cells, regardless of what cell type they eventually become. 

Because some of the data sets included DNA samples collected at multiple points in time, the team could double-check how stable these methylation patterns were over several years. “They found that these methylation states are very stable in an individual,” which further strengthens the idea that these methyl groups could conceivably stick around from fertilization to adulthood, Waterland said. 

“It seems that something happens very early on in development, and that this remains written in the methylation pattern of different cell types in our body,” van Dongen said. “It remains archived in our cells.”

That said, for now, it’s unclear what exact effect these methyl groups have on gene expression (the turning “on” or “off” of a gene), or whether the methylation pattern represents a cause, effect or byproduct of identical twinning, she noted.

“To really understand the exact steps that take place early on in embryonic development that lead to the formation of monozygotic twins, we really need functional studies,” van Dongen said, referring to research looking at how these changes affect actual cells.

The team plans to conduct such studies using animal models and human cells in lab dishes; they may also use models of the human embryo known as blastoids

In the future, the team could also survey a larger swatch of epigenetic modifications to the genome, to see if the methylation pattern extends beyond the 800-odd genes already identified, Waterland said.

The new study covered hundreds of thousands of potential methyl group sticking points, but there are plenty more to be probed, he said.

Related Content:

7 diseases you can learn about from a genetic test

Genetics by the numbers: 10 tantalizing tales

10 amazing things scientists just did with CRISPR 

This article was originally published by Live Science. Read the original article here.

 

Advertisement
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Local

Indian Coast Guard to get three more pollution control vessels to enhance capabilities

Published

on

Panaji: As a marine pollution control response, three more pollution control vessels (PCVs) will be added to the Indian Coast Guard’s (ICG) fleet, Union Defence Secretary Ajay Kumar said on Tuesday.

Speaking to reporters on the sidelines of the 8th National Pollution Response Exercise currently taking place in Goa, Kumar said that India is also willing to help friendly countries in upgrading their capabilities.

Around 19 friendly countries are participating in the exercise.

The Union government is continuously trying to upgrade the ICG’s capabilities to face pollution hazards in the ocean.

“Today, the Indian Coast Guard is capable of handling the highest level of oil spills in this region, which is 700 tonnes and above. Only a few countries in the world have this capability,” Kumar said.

Currently, the ICG has two dedicated vessels for pollution response, while three more will be added to its fleet to enhance its capability, he said.

The Indian Ocean is one of the busiest routes in the world and half of the trade takes place in the region, the senior official said, adding that oil exploration has also increase and accidents can happen anywhere.

Countries are also battling with the issue of plastic waste being dumped in the ocean, he said.

“We need to fight this (plastic pollution) collectively. It cannot be done by one country. All the coastal countries in the region need to make efforts,” Kumar said.

The defence secretary lauded the Punit Sagar Mission launched by Prime Minister Narendra Modi to clear plastic from the coastline.

“We should ensure that plastic waste is not washed into the ocean. Every year, 15,000 million tonnes of plastic washes into the Indian Ocean from different countries. If this continues, our marine life, environment, ecology and health will be affected,” he said.

Asked about cooperation from Pakistan and China over the pollution response, Kumar said, “This is an environmental issue and all countries should contribute towards it.” Several treaties have been signed to reduce pollution in the Indian Ocean, and friendly nations will have to collectively ensure that these are observed, he said.(GoaNewsHub)

Continue Reading

Science News

Brain Implant Translates Paralyzed Man’s Thoughts Into Text With 94% Accuracy

Published

on

By

A man paralyzed from the neck down due to a spinal cord injury he sustained in 2007 has shown he can communicate his thoughts, thanks to a brain implant system that translates his imagined handwriting into actual text.

 

The device – part of a longstanding research collaboration called BrainGate – is a brain-computer interface (BCI), that uses artificial intelligence (AI) to interpret signals of neural activity generated during handwriting.

In this case, the man – called T5 in the study, and who was 65 years of age at the time of the research – wasn’t doing any actual writing, as his hand, along with all his limbs, had been paralyzed for several years.

But during the experiment, reported in Nature earlier in the year, the man concentrated as if he were writing – effectively, thinking about making the letters with an imaginary pen and paper.

As he did this, electrodes implanted in his motor cortex recorded signals of his brain activity, which were then interpreted by algorithms running on an external computer, decoding T5’s imaginary pen trajectories, which mentally traced the 26 letters of the alphabet and some basic punctuation marks.

“This new system uses both the rich neural activity recorded by intracortical electrodes and the power of language models that, when applied to the neurally decoded letters, can create rapid and accurate text,” says first author of the study Frank Willett, a neural prosthetics researcher from Stanford University.

 

Similar systems developed as part of the BrainGate have been transcribing neural activity into text for several years, but many previous interfaces have focused on different cerebral metaphors for denoting which characters to write – such as point-and-click typing with a computer cursor controlled by the mind.

It wasn’t known, however, how well the neural representations of handwriting – a more rapid and dexterous motor skill – might be retained in the brain, nor how well they might be leveraged to communicate with a brain-computer interface, or BCI.

Here, T5 showed just how much promise a virtual handwriting system could offer for people who have lost virtually all independent physical movement.

BrainImpantDevice2A diagram of how the system works. (F. Willett et al., Nature, 2021, Erika Woodrum)

In tests, the man was able to achieve writing speeds of 90 characters per minute (about 18 words per minute), with approximately 94 percent accuracy (and up to 99 percent accuracy with autocorrect enabled).

Not only is that rate significantly faster than previous BCI experiments (using things like virtual keyboards), but it’s almost on par with the typing speed of smartphone users in the man’s age group – which is about 115 characters or 23 words per minute, the researchers say.

 

“We’ve learned that the brain retains its ability to prescribe fine movements a full decade after the body has lost its ability to execute those movements,” Willett says.

“And we’ve learned that complicated intended motions involving changing speeds and curved trajectories, like handwriting, can be interpreted more easily and more rapidly by the artificial-intelligence algorithms we’re using than can simpler intended motions like moving a cursor in a straight path at a steady speed.”

Basically, the researchers say that alphabetical letters are very different from one another in shape, so the AI can decode the user’s intention more rapidly as the characters are drawn, compared to other BCI systems that don’t make use of dozens of different inputs in the same way.

BrainImpantDevice2The man’s imagined handwriting, as interpreted by the system. (Frank Willett)

Despite the potential of this first-of-its-kind technology, the researchers emphasize that the current system is only a proof of concept so far, having only been shown to work with one participant, so it’s definitely not a complete, clinically viable product as yet.

The next steps in the research could include training other people to use the interface, expanding the character set to include more symbols (such as capital letters), refining the sensitivity of the system, and adding more sophisticated editing tools for the user.

There’s plenty of work to still be done, but we could be looking at an exciting new development here, giving the ability to communicate back to people who lost it.

“Our results open a new approach for BCIs and demonstrate the feasibility of accurately decoding rapid, dexterous movements years after paralysis,” the researchers write.

“We believe that the future of intracortical BCIs is bright.”

The findings are reported in Nature.

 

Continue Reading

Science News

Astronomers Detect a ‘Tsunami’ of Gravitational Waves. Here’s Where They’re Coming From

Published

on

By

The most recent gravitational wave observing run has netted the biggest haul yet.

In less than five months, from November 2019 to March 2020, the LIGO-Virgo interferometers recorded a massive 35 gravitational wave events. On average, that’s almost 1.7 gravitational wave events every week for the duration of the run.

 

This represents a significant increase from the 1.5-event weekly average detected on the previous run, and a result that has plumped up the number of total events to 90 since that first history-making gravitational wave detection in September 2015.

“These discoveries represent a tenfold increase in the number of gravitational waves detected by LIGO and Virgo since they started observing,” said astrophysicist Susan Scott of the Australian National University in Australia.

“We’ve detected 35 events. That’s massive! In contrast, we made three detections in our first observing run, which lasted four months in 2015-16. This really is a new era for gravitational wave detections and the growing population of discoveries is revealing so much information about the life and death of stars throughout the Universe.”

Of the 35 new detections, 32 are most likely the result of mergers between pairs of black holes. This is when pairs of black holes on a close orbit are drawn in by mutual gravity, eventually colliding to form one single, more massive black hole.

That collision sends ripples through space-time, like the ripples generated when you throw a rock in a pond; astronomers can analyze those ripples to determine the properties of the black holes.

mergersAn infographic showing the masses of all black hole mergers announced to date. (LIGO-Virgo/Aaron Geller/Northwestern University)

The data revealed a range of black hole masses, with the most massive clocking in at around 87 times the mass of the Sun. That black hole merged with a companion 61 times the mass of the Sun, resulting in a single black hole 141 times the mass of the Sun. That event is named GW200220_061928.

Another merger produced a black hole 104 times the mass of the Sun; both of these are considered intermediate mass black holes, a mass range between 100 and around a million solar masses, in which very few black holes have been detected.

 

GW200220_061928 is also interesting, because at least one of the black holes involved in the merger falls into what we call the upper mass gap. According to our models, black holes over about 65 solar masses can’t form from a single star, as stellar mass black holes do.

That’s because the precursor stars are so massive that their supernovae – known as pair-instability supernovae – ought to completely obliterate the stellar core, leaving nothing behind to gravitationally collapse into a black hole.

This suggests that the 87 solar mass black hole might be the product of a previous merger. GW200220_061928 isn’t the first that’s involved a black hole in the upper mass gap, but its detection does suggest that hierarchical black hole mergers are not uncommon.

And another event includes an object in the lower mass gap – a gap of black holes between 2.5 and 5 times the mass of the Sun. We’ve not conclusively found a neutron star larger than the former, or a black hole smaller than the latter; the event named GW200210_092254 involved an object clocking in at 2.8 solar masses. Astronomers have concluded that it’s probably a very small black hole.

 

“Looking at the masses and spins of the black holes in these binary systems indicates how these systems got together in the first place,” Scott said.

“It also raises some really fascinating questions. For example, did the system originally form with two stars that went through their life cycles together and eventually became black holes? Or were the two black holes thrust together in a very dense dynamical environment such as at the centre of a galaxy?”

The other three events out of the 35 involved a black hole and something else much less massive, likely a neutron star. These events are of great interest to astronomers, since they might reveal the stuff that’s inside a neutron star – if we ever detect one that emits light. By finding more of these mergers, we can start to build a better understanding of how they actually occur.

“Only now are we starting to appreciate the wonderful diversity of black holes and neutron stars,” said astronomer Christopher Berry of the University of Glasgow in the UK

“Our latest results prove that they come in many sizes and combinations – we have solved some long-standing mysteries, but uncovered some new puzzles too. Using these observations, we are closer to unlocking the mysteries of how stars, the building blocks of our Universe, evolve.”

The team’s paper has been submitted for publication, and can be found on preprint server arXiv.

 

Continue Reading
Advertisement

Trending