Connect with us

Science News

Is Eating Fat Good For You or Not? Here’s Why It’s So Confusing

Published

on

You’d be forgiven for being confused about whether or not you should eat fat. For a long time, people were told to stay well away from it entirely. But lately, fat seems to be back on the table – but only certain types of fat.

 

With so many conflicting messages about which types of fat to eat, it’s no wonder many people are confused about whether or not they should it. Here are just a few reasons why the advice about fat is so confusing – and how much fat you should really eat.

Some fat is essential in our diet as it gives us energy and helps us absorbs certain vitamins, including vitamin A, D and E. But there are many different types of fats and eating too much of certain types can be harmful to us. Unsaturated fats (also called monounsaturated or polyunsaturated) are known as “good” fats and are important for helping us lower cholesterol and keep our heart healthy. Unsaturated fats can be found in foods such as avocados, olive or peanut oils, and fish.

But saturated fats can be bad for us when eaten in excess, and can raise cholesterol and increase risk of heart disease. Trans fats can also increase cholesterol levels. Foods that contain saturated and trans fats include butter, cheese, bacon, biscuits and fried foods.

 

Fat is important

Many health authorities worldwide agree fat is an important part of a healthy diet – but that we should only get so many calories daily from fats.

The World Health Organization (WHO) recommends people get no more than 30 percent of their daily calories from fat – of which only 10 percent of daily calories should be from saturated fats, and less than 1 percent from trans fats.

The UK’s recommendations are much the same, limiting saturated fats to only 10 percent of our daily calorie intake – around 30g per day for men (around 270 calories) and 20g for women (around 180 calories).

But in Europe, health recommendations suggest fat should comprise between 20-35 percent of our total daily calories. There’s also no recommendations for how many calories should be from saturated or trans fats – just that these should be limited. In the US, people are only advised to limit saturated fat intake to less than 10 percent of daily calories.

So while there seems to be agreement in how much fat people should eat, the slight variations in these recommendations – as well as variations in how much of certain types of fat we should eat – might explain the confusion over whether or not we should eat fat and how much of it we should eat.

 

Misleading advice

If all the different recommendations weren’t confusing enough, there’s also a lot of information out there that’s either too simplistic or incorrect. This makes the recommendations about eating fat all the more complicated.

For example, the Joint British Societies (which publishes recommendations to help people reduce their risk of cardiovascular disease) recommends that only around 10 percent of a person’s total fat intake should come from saturated fats.

As typically we consume 30-40 percent of our calories from fat, and international and government bodies recommend that around 30 percent of daily calories should come from fat, limiting saturated fats to 10 percent of this would mean they’d make up only 3 percent of our day’s calories. This would amount to little more than 20g of saturated fat – around two tablespoons of butter.

This differs from many other recommendations – such as from WHO – which states 10 percent of all the calories people eat daily should come from saturated fats. It’s also unclear whether such a strict restriction of saturated fats would have any benefit and would be difficult for many people to achieve as a variety of healthy foods – such as olive oil – can also contain saturated fats.

 

There’s also a lot of advice that’s too simplistic, which can be inadvertently misleading.

For example, one tip the British Heart Foundation recommends for swapping saturated for unsaturated fats is to use a spray oil or measuring oils, instead of just pouring it straight from the bottle.

But this doesn’t account for the fact that different types of oil have different saturated fat levels. Sunflower oil, for example, is already low in saturated fat, so using less would significantly reduce calories but only modestly reduce saturated fat levels.

Other advice from the British Heart Foundation includes avoiding frying foods and switching to semi-skimmed milk. But focusing on methods that have a minimal effect on saturated fat levels can make it more confusing to know which foods (and fats) to avoid.

The easiest way to avoid saturated fats is avoiding foods like pies, cakes and biscuits. These foods are high in saturated fats and tend to be the greatest sources of them in most peoples’ diets.

Getting the right amount

Research suggests that we should get around a third of our energy from fat – two-thirds of which should be unsaturated fats.

Of course, certain food sources will contain different types of fats, and different levels of fats. For example, avocados and pies are both high in fat. But avocados are high in healthy monounsaturated fats, which are good for heart health and can lower cholesterol. Pies, on the other hand, are high in saturated fats, which can be bad for your heart and cholesterol levels.

The easiest way to make sure you’re eating enough of the right fats is to avoid foods that contain saturated and trans fats – such as butter, hard cheeses, pies, biscuits, pastries, cakes, processed meats and crisps. These foods are also high in salt, carbohydrates and sugar, so can also have other health harms such as increasing risk of high blood pressure.

Instead, try including sources of healthy fats – such as avocados, olive oil, nuts and fish. This will ensure that you’re not only getting enough fat in your diet, but that you’re getting the right kind of fats (around 75g a day for women and 90g for men). The Conversation

Duane Mellor, Lead for Evidence-Based Medicine and Nutrition, Aston Medical School, Aston University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 

Advertisement
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Local

Indian Coast Guard to get three more pollution control vessels to enhance capabilities

Published

on

Panaji: As a marine pollution control response, three more pollution control vessels (PCVs) will be added to the Indian Coast Guard’s (ICG) fleet, Union Defence Secretary Ajay Kumar said on Tuesday.

Speaking to reporters on the sidelines of the 8th National Pollution Response Exercise currently taking place in Goa, Kumar said that India is also willing to help friendly countries in upgrading their capabilities.

Around 19 friendly countries are participating in the exercise.

The Union government is continuously trying to upgrade the ICG’s capabilities to face pollution hazards in the ocean.

“Today, the Indian Coast Guard is capable of handling the highest level of oil spills in this region, which is 700 tonnes and above. Only a few countries in the world have this capability,” Kumar said.

Currently, the ICG has two dedicated vessels for pollution response, while three more will be added to its fleet to enhance its capability, he said.

The Indian Ocean is one of the busiest routes in the world and half of the trade takes place in the region, the senior official said, adding that oil exploration has also increase and accidents can happen anywhere.

Countries are also battling with the issue of plastic waste being dumped in the ocean, he said.

“We need to fight this (plastic pollution) collectively. It cannot be done by one country. All the coastal countries in the region need to make efforts,” Kumar said.

The defence secretary lauded the Punit Sagar Mission launched by Prime Minister Narendra Modi to clear plastic from the coastline.

“We should ensure that plastic waste is not washed into the ocean. Every year, 15,000 million tonnes of plastic washes into the Indian Ocean from different countries. If this continues, our marine life, environment, ecology and health will be affected,” he said.

Asked about cooperation from Pakistan and China over the pollution response, Kumar said, “This is an environmental issue and all countries should contribute towards it.” Several treaties have been signed to reduce pollution in the Indian Ocean, and friendly nations will have to collectively ensure that these are observed, he said.(GoaNewsHub)

Continue Reading

Science News

Brain Implant Translates Paralyzed Man’s Thoughts Into Text With 94% Accuracy

Published

on

By

A man paralyzed from the neck down due to a spinal cord injury he sustained in 2007 has shown he can communicate his thoughts, thanks to a brain implant system that translates his imagined handwriting into actual text.

 

The device – part of a longstanding research collaboration called BrainGate – is a brain-computer interface (BCI), that uses artificial intelligence (AI) to interpret signals of neural activity generated during handwriting.

In this case, the man – called T5 in the study, and who was 65 years of age at the time of the research – wasn’t doing any actual writing, as his hand, along with all his limbs, had been paralyzed for several years.

But during the experiment, reported in Nature earlier in the year, the man concentrated as if he were writing – effectively, thinking about making the letters with an imaginary pen and paper.

As he did this, electrodes implanted in his motor cortex recorded signals of his brain activity, which were then interpreted by algorithms running on an external computer, decoding T5’s imaginary pen trajectories, which mentally traced the 26 letters of the alphabet and some basic punctuation marks.

“This new system uses both the rich neural activity recorded by intracortical electrodes and the power of language models that, when applied to the neurally decoded letters, can create rapid and accurate text,” says first author of the study Frank Willett, a neural prosthetics researcher from Stanford University.

 

Similar systems developed as part of the BrainGate have been transcribing neural activity into text for several years, but many previous interfaces have focused on different cerebral metaphors for denoting which characters to write – such as point-and-click typing with a computer cursor controlled by the mind.

It wasn’t known, however, how well the neural representations of handwriting – a more rapid and dexterous motor skill – might be retained in the brain, nor how well they might be leveraged to communicate with a brain-computer interface, or BCI.

Here, T5 showed just how much promise a virtual handwriting system could offer for people who have lost virtually all independent physical movement.

BrainImpantDevice2A diagram of how the system works. (F. Willett et al., Nature, 2021, Erika Woodrum)

In tests, the man was able to achieve writing speeds of 90 characters per minute (about 18 words per minute), with approximately 94 percent accuracy (and up to 99 percent accuracy with autocorrect enabled).

Not only is that rate significantly faster than previous BCI experiments (using things like virtual keyboards), but it’s almost on par with the typing speed of smartphone users in the man’s age group – which is about 115 characters or 23 words per minute, the researchers say.

 

“We’ve learned that the brain retains its ability to prescribe fine movements a full decade after the body has lost its ability to execute those movements,” Willett says.

“And we’ve learned that complicated intended motions involving changing speeds and curved trajectories, like handwriting, can be interpreted more easily and more rapidly by the artificial-intelligence algorithms we’re using than can simpler intended motions like moving a cursor in a straight path at a steady speed.”

Basically, the researchers say that alphabetical letters are very different from one another in shape, so the AI can decode the user’s intention more rapidly as the characters are drawn, compared to other BCI systems that don’t make use of dozens of different inputs in the same way.

BrainImpantDevice2The man’s imagined handwriting, as interpreted by the system. (Frank Willett)

Despite the potential of this first-of-its-kind technology, the researchers emphasize that the current system is only a proof of concept so far, having only been shown to work with one participant, so it’s definitely not a complete, clinically viable product as yet.

The next steps in the research could include training other people to use the interface, expanding the character set to include more symbols (such as capital letters), refining the sensitivity of the system, and adding more sophisticated editing tools for the user.

There’s plenty of work to still be done, but we could be looking at an exciting new development here, giving the ability to communicate back to people who lost it.

“Our results open a new approach for BCIs and demonstrate the feasibility of accurately decoding rapid, dexterous movements years after paralysis,” the researchers write.

“We believe that the future of intracortical BCIs is bright.”

The findings are reported in Nature.

 

Continue Reading

Science News

Astronomers Detect a ‘Tsunami’ of Gravitational Waves. Here’s Where They’re Coming From

Published

on

By

The most recent gravitational wave observing run has netted the biggest haul yet.

In less than five months, from November 2019 to March 2020, the LIGO-Virgo interferometers recorded a massive 35 gravitational wave events. On average, that’s almost 1.7 gravitational wave events every week for the duration of the run.

 

This represents a significant increase from the 1.5-event weekly average detected on the previous run, and a result that has plumped up the number of total events to 90 since that first history-making gravitational wave detection in September 2015.

“These discoveries represent a tenfold increase in the number of gravitational waves detected by LIGO and Virgo since they started observing,” said astrophysicist Susan Scott of the Australian National University in Australia.

“We’ve detected 35 events. That’s massive! In contrast, we made three detections in our first observing run, which lasted four months in 2015-16. This really is a new era for gravitational wave detections and the growing population of discoveries is revealing so much information about the life and death of stars throughout the Universe.”

Of the 35 new detections, 32 are most likely the result of mergers between pairs of black holes. This is when pairs of black holes on a close orbit are drawn in by mutual gravity, eventually colliding to form one single, more massive black hole.

That collision sends ripples through space-time, like the ripples generated when you throw a rock in a pond; astronomers can analyze those ripples to determine the properties of the black holes.

mergersAn infographic showing the masses of all black hole mergers announced to date. (LIGO-Virgo/Aaron Geller/Northwestern University)

The data revealed a range of black hole masses, with the most massive clocking in at around 87 times the mass of the Sun. That black hole merged with a companion 61 times the mass of the Sun, resulting in a single black hole 141 times the mass of the Sun. That event is named GW200220_061928.

Another merger produced a black hole 104 times the mass of the Sun; both of these are considered intermediate mass black holes, a mass range between 100 and around a million solar masses, in which very few black holes have been detected.

 

GW200220_061928 is also interesting, because at least one of the black holes involved in the merger falls into what we call the upper mass gap. According to our models, black holes over about 65 solar masses can’t form from a single star, as stellar mass black holes do.

That’s because the precursor stars are so massive that their supernovae – known as pair-instability supernovae – ought to completely obliterate the stellar core, leaving nothing behind to gravitationally collapse into a black hole.

This suggests that the 87 solar mass black hole might be the product of a previous merger. GW200220_061928 isn’t the first that’s involved a black hole in the upper mass gap, but its detection does suggest that hierarchical black hole mergers are not uncommon.

And another event includes an object in the lower mass gap – a gap of black holes between 2.5 and 5 times the mass of the Sun. We’ve not conclusively found a neutron star larger than the former, or a black hole smaller than the latter; the event named GW200210_092254 involved an object clocking in at 2.8 solar masses. Astronomers have concluded that it’s probably a very small black hole.

 

“Looking at the masses and spins of the black holes in these binary systems indicates how these systems got together in the first place,” Scott said.

“It also raises some really fascinating questions. For example, did the system originally form with two stars that went through their life cycles together and eventually became black holes? Or were the two black holes thrust together in a very dense dynamical environment such as at the centre of a galaxy?”

The other three events out of the 35 involved a black hole and something else much less massive, likely a neutron star. These events are of great interest to astronomers, since they might reveal the stuff that’s inside a neutron star – if we ever detect one that emits light. By finding more of these mergers, we can start to build a better understanding of how they actually occur.

“Only now are we starting to appreciate the wonderful diversity of black holes and neutron stars,” said astronomer Christopher Berry of the University of Glasgow in the UK

“Our latest results prove that they come in many sizes and combinations – we have solved some long-standing mysteries, but uncovered some new puzzles too. Using these observations, we are closer to unlocking the mysteries of how stars, the building blocks of our Universe, evolve.”

The team’s paper has been submitted for publication, and can be found on preprint server arXiv.

 

Continue Reading
Advertisement

Trending