Connect with us

Science News

This Week’s Deadly Heatwave Shows We Need a New Way to Talk About Climate Change

Published

on

New normal. Record-breaking. Unprecedented.

In recent days, as Western Canada and the United States have been broiling under a climate-fueled heat crisis, all sorts of superlatives have been used to describe never-before-seen temperatures: the British Columbia community of Lytton hit a mind-boggling 49.5 C on June 29, breaking all-time temperature records three days in a row.

 

People are understandably shocked and scared by those numbers. But should this have come as a surprise? No.

Scientists have been warning about the link between longer, more intense heat events and climate change for over 40 years. The language of “normals” and “new records” is rapidly becoming meaningless.

But the notion that humanity should have known, or should have done something about the crisis earlier — that we should be ashamed for our lack of inaction — is unhelpful for dealing with the climate crisis.

Talking climate

So, what’s a better, more helpful approach to communicating climate change?

The first thing to do is to spend more time talking about climate change. There is far too little discussion around this issue in the public sphere. Global heating is the biggest emergency the planet has ever faced, but one would not know it reading or listening to the news.

Last year, stories about climate change represented just 0.4 per cent of all major US broadcast news coverage. In 2019, it was 0.7 per cent. Even in the midst of an unprecedented heat wave stretching from California to Yukon, references to climate change are few and far between.

 

Information deficit model

Ironically, one of the biggest blind spots has to do with how information about this issue is shared with the public.

The conventional approach relies upon what’s known as the “information deficit model.” The deficit model builds on the assumption that people will take action on climate change if they have more information about it.

This information-based approach has shaped all sorts of communication, from public safety ads on drinking and driving to news reporting about climate and other important issues.

Unfortunately, the relationship between how much people know and how they act is not always linear. Feeding more facts to someone who is highly politically motivated to dismiss climate change will not convince them to pay more attention to the problem.

Climate change is a tricky story to wrap one’s head around. It can feel too big, too scary and too difficult for any one person to fix. Information, while important, is not always enough.

For there to be engagement with this subject and, by extension, political action, the climate crisis must feel personal, relatable, understandable and, most importantly, solvable.

file 20210629 23 ndc642

Above: Estimated per cent of adults who think the Earth is getting warmer. The Yale Program on Climate Change Communication bears no responsibility for the analyses or interpretations of the data presented here.

Charts and graphs — even polar bears — rarely achieve that goal. Eighty-three per cent of Canadians agree that the Earth is getting warmer. But just 47 per cent think climate change will harm them personally.

To have people connect on climate, we need to have more conversations about how people are working to solve it and how those solutions are improving their quality of life where they live. These conversations foist an otherwise abstract, intangible and scary subject into the realm of the everyday — and make it feel solvable.

Solutions matter

Environmental communicators have long pointed to an excessive use of fear messaging around climate change as one of the main problems with engaging the public on this subject.

The challenge is to pair fear messaging with information about efficacy, namely what people can actually do to mitigate the fear. The combination of fear and efficacy leads to what is known as “danger control,” actions to mitigate the danger, as opposed to “fear control,” actions to shut down the fear.

 

In the case of COVID-19, the sense of efficacy was clear: hand washing, social distancing, masking. With climate change, efficacy information is far less obvious, and more difficult to act upon.

It’s often argued that the large emitters, notably fossil fuel producers, are the ones that harbor the most blame, and are responsible for cleaning up the mess. The Guardian points out that 100 companies are responsible for 71 per cent of emissions.

Yes, it’s clear the world needs to stop burning fossil fuels — oil, gas and coal. But to get there, individuals can also set examples of what pro-environmental behavior looks like.

It can be as simple as posting photos to social media from community cleanup drives, nature walks or posts about any kind of pro-environmental behavior, such as taking transit. This form of communication — as opposed to images that promote a high-carbon lifestyle — normalizes the urgency, importance and possibility of protecting the Earth.

Some of the most effective communicators are TV news meteorologists, who often have loyal followers. More of them are discussing ways the climate crisis is being addressed where people live.

 

Seeing is believing

Most communication around risk, builds on the standard of moral injunctions — that one should or must act to do something, or else. For example, a park sign might tell visitors not to feed the ducks because human food is bad for them. And yet, visitors keep feeding the ducks.

Instead, communicators should rely on “descriptive social norms,” descriptions of behavior that others, like them, are already doing and benefiting them.

In the United Kingdom, a 2015 campaign urged people to “Take your litter home, other people do.” It was more likely to reduce illegal littering than signs that said “Please keep your park clean by not littering.”

Solutions, notably in the form of stories about people and communities taking action to solve the climate crisis, are among the most effective ways of communicating the emergency.

The National Observer‘s “First Nations Forward” series is a great example of this type of reporting. Story after story details how First Nations communities in British Columbia are leading the way in the transition to a renewable-energy future.

Mainstream news media outlets, like the one I work for, Global News, are also spending more time on climate and rethinking how they cover it. One recent national story reported on the massive energy transition already under way in Alberta.

Such stories about change that is working send a message that action to mitigate the climate crisis by ordinary people is doable, normal, empowering and desirable. They energize and mobilize members of the public ready to take action, by providing visual examples of who is leading the way.

They also move the conversation beyond the conventional emphasis on skeptics and deniers, and normalize pro-environmental values and behaviors for the growing number of people who are already alarmed or concerned about the climate emergency.

Far from driving the fear narrative, stories of climate solutions unlock people’s sense of efficacy and agency in the face of impending danger. In other words, they engage the public on climate change by doing what all good communication does: meeting people where they are at, through a mobilizing story.

This is storytelling 101: engaging audiences, not turning them away, as most climate reports do. The Conversation

Kamyar Razavi, PhD candidate in the School of Communication, Simon Fraser University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 

Advertisement
Click to comment

You must be logged in to post a comment Login

Leave a Reply

Local

Indian Coast Guard to get three more pollution control vessels to enhance capabilities

Published

on

Panaji: As a marine pollution control response, three more pollution control vessels (PCVs) will be added to the Indian Coast Guard’s (ICG) fleet, Union Defence Secretary Ajay Kumar said on Tuesday.

Speaking to reporters on the sidelines of the 8th National Pollution Response Exercise currently taking place in Goa, Kumar said that India is also willing to help friendly countries in upgrading their capabilities.

Around 19 friendly countries are participating in the exercise.

The Union government is continuously trying to upgrade the ICG’s capabilities to face pollution hazards in the ocean.

“Today, the Indian Coast Guard is capable of handling the highest level of oil spills in this region, which is 700 tonnes and above. Only a few countries in the world have this capability,” Kumar said.

Currently, the ICG has two dedicated vessels for pollution response, while three more will be added to its fleet to enhance its capability, he said.

The Indian Ocean is one of the busiest routes in the world and half of the trade takes place in the region, the senior official said, adding that oil exploration has also increase and accidents can happen anywhere.

Countries are also battling with the issue of plastic waste being dumped in the ocean, he said.

“We need to fight this (plastic pollution) collectively. It cannot be done by one country. All the coastal countries in the region need to make efforts,” Kumar said.

The defence secretary lauded the Punit Sagar Mission launched by Prime Minister Narendra Modi to clear plastic from the coastline.

“We should ensure that plastic waste is not washed into the ocean. Every year, 15,000 million tonnes of plastic washes into the Indian Ocean from different countries. If this continues, our marine life, environment, ecology and health will be affected,” he said.

Asked about cooperation from Pakistan and China over the pollution response, Kumar said, “This is an environmental issue and all countries should contribute towards it.” Several treaties have been signed to reduce pollution in the Indian Ocean, and friendly nations will have to collectively ensure that these are observed, he said.(GoaNewsHub)

Continue Reading

Science News

Brain Implant Translates Paralyzed Man’s Thoughts Into Text With 94% Accuracy

Published

on

By

A man paralyzed from the neck down due to a spinal cord injury he sustained in 2007 has shown he can communicate his thoughts, thanks to a brain implant system that translates his imagined handwriting into actual text.

 

The device – part of a longstanding research collaboration called BrainGate – is a brain-computer interface (BCI), that uses artificial intelligence (AI) to interpret signals of neural activity generated during handwriting.

In this case, the man – called T5 in the study, and who was 65 years of age at the time of the research – wasn’t doing any actual writing, as his hand, along with all his limbs, had been paralyzed for several years.

But during the experiment, reported in Nature earlier in the year, the man concentrated as if he were writing – effectively, thinking about making the letters with an imaginary pen and paper.

As he did this, electrodes implanted in his motor cortex recorded signals of his brain activity, which were then interpreted by algorithms running on an external computer, decoding T5’s imaginary pen trajectories, which mentally traced the 26 letters of the alphabet and some basic punctuation marks.

“This new system uses both the rich neural activity recorded by intracortical electrodes and the power of language models that, when applied to the neurally decoded letters, can create rapid and accurate text,” says first author of the study Frank Willett, a neural prosthetics researcher from Stanford University.

 

Similar systems developed as part of the BrainGate have been transcribing neural activity into text for several years, but many previous interfaces have focused on different cerebral metaphors for denoting which characters to write – such as point-and-click typing with a computer cursor controlled by the mind.

It wasn’t known, however, how well the neural representations of handwriting – a more rapid and dexterous motor skill – might be retained in the brain, nor how well they might be leveraged to communicate with a brain-computer interface, or BCI.

Here, T5 showed just how much promise a virtual handwriting system could offer for people who have lost virtually all independent physical movement.

BrainImpantDevice2A diagram of how the system works. (F. Willett et al., Nature, 2021, Erika Woodrum)

In tests, the man was able to achieve writing speeds of 90 characters per minute (about 18 words per minute), with approximately 94 percent accuracy (and up to 99 percent accuracy with autocorrect enabled).

Not only is that rate significantly faster than previous BCI experiments (using things like virtual keyboards), but it’s almost on par with the typing speed of smartphone users in the man’s age group – which is about 115 characters or 23 words per minute, the researchers say.

 

“We’ve learned that the brain retains its ability to prescribe fine movements a full decade after the body has lost its ability to execute those movements,” Willett says.

“And we’ve learned that complicated intended motions involving changing speeds and curved trajectories, like handwriting, can be interpreted more easily and more rapidly by the artificial-intelligence algorithms we’re using than can simpler intended motions like moving a cursor in a straight path at a steady speed.”

Basically, the researchers say that alphabetical letters are very different from one another in shape, so the AI can decode the user’s intention more rapidly as the characters are drawn, compared to other BCI systems that don’t make use of dozens of different inputs in the same way.

BrainImpantDevice2The man’s imagined handwriting, as interpreted by the system. (Frank Willett)

Despite the potential of this first-of-its-kind technology, the researchers emphasize that the current system is only a proof of concept so far, having only been shown to work with one participant, so it’s definitely not a complete, clinically viable product as yet.

The next steps in the research could include training other people to use the interface, expanding the character set to include more symbols (such as capital letters), refining the sensitivity of the system, and adding more sophisticated editing tools for the user.

There’s plenty of work to still be done, but we could be looking at an exciting new development here, giving the ability to communicate back to people who lost it.

“Our results open a new approach for BCIs and demonstrate the feasibility of accurately decoding rapid, dexterous movements years after paralysis,” the researchers write.

“We believe that the future of intracortical BCIs is bright.”

The findings are reported in Nature.

 

Continue Reading

Science News

Astronomers Detect a ‘Tsunami’ of Gravitational Waves. Here’s Where They’re Coming From

Published

on

By

The most recent gravitational wave observing run has netted the biggest haul yet.

In less than five months, from November 2019 to March 2020, the LIGO-Virgo interferometers recorded a massive 35 gravitational wave events. On average, that’s almost 1.7 gravitational wave events every week for the duration of the run.

 

This represents a significant increase from the 1.5-event weekly average detected on the previous run, and a result that has plumped up the number of total events to 90 since that first history-making gravitational wave detection in September 2015.

“These discoveries represent a tenfold increase in the number of gravitational waves detected by LIGO and Virgo since they started observing,” said astrophysicist Susan Scott of the Australian National University in Australia.

“We’ve detected 35 events. That’s massive! In contrast, we made three detections in our first observing run, which lasted four months in 2015-16. This really is a new era for gravitational wave detections and the growing population of discoveries is revealing so much information about the life and death of stars throughout the Universe.”

Of the 35 new detections, 32 are most likely the result of mergers between pairs of black holes. This is when pairs of black holes on a close orbit are drawn in by mutual gravity, eventually colliding to form one single, more massive black hole.

That collision sends ripples through space-time, like the ripples generated when you throw a rock in a pond; astronomers can analyze those ripples to determine the properties of the black holes.

mergersAn infographic showing the masses of all black hole mergers announced to date. (LIGO-Virgo/Aaron Geller/Northwestern University)

The data revealed a range of black hole masses, with the most massive clocking in at around 87 times the mass of the Sun. That black hole merged with a companion 61 times the mass of the Sun, resulting in a single black hole 141 times the mass of the Sun. That event is named GW200220_061928.

Another merger produced a black hole 104 times the mass of the Sun; both of these are considered intermediate mass black holes, a mass range between 100 and around a million solar masses, in which very few black holes have been detected.

 

GW200220_061928 is also interesting, because at least one of the black holes involved in the merger falls into what we call the upper mass gap. According to our models, black holes over about 65 solar masses can’t form from a single star, as stellar mass black holes do.

That’s because the precursor stars are so massive that their supernovae – known as pair-instability supernovae – ought to completely obliterate the stellar core, leaving nothing behind to gravitationally collapse into a black hole.

This suggests that the 87 solar mass black hole might be the product of a previous merger. GW200220_061928 isn’t the first that’s involved a black hole in the upper mass gap, but its detection does suggest that hierarchical black hole mergers are not uncommon.

And another event includes an object in the lower mass gap – a gap of black holes between 2.5 and 5 times the mass of the Sun. We’ve not conclusively found a neutron star larger than the former, or a black hole smaller than the latter; the event named GW200210_092254 involved an object clocking in at 2.8 solar masses. Astronomers have concluded that it’s probably a very small black hole.

 

“Looking at the masses and spins of the black holes in these binary systems indicates how these systems got together in the first place,” Scott said.

“It also raises some really fascinating questions. For example, did the system originally form with two stars that went through their life cycles together and eventually became black holes? Or were the two black holes thrust together in a very dense dynamical environment such as at the centre of a galaxy?”

The other three events out of the 35 involved a black hole and something else much less massive, likely a neutron star. These events are of great interest to astronomers, since they might reveal the stuff that’s inside a neutron star – if we ever detect one that emits light. By finding more of these mergers, we can start to build a better understanding of how they actually occur.

“Only now are we starting to appreciate the wonderful diversity of black holes and neutron stars,” said astronomer Christopher Berry of the University of Glasgow in the UK

“Our latest results prove that they come in many sizes and combinations – we have solved some long-standing mysteries, but uncovered some new puzzles too. Using these observations, we are closer to unlocking the mysteries of how stars, the building blocks of our Universe, evolve.”

The team’s paper has been submitted for publication, and can be found on preprint server arXiv.

 

Continue Reading
Advertisement

Trending